

DIPARTIMENTO DI MEDICINA VETERINARIA

Game of Research Season Four, 4June 2021 Equine papillomavirus-associated genital tumors: a possible animal model for human cancers

Samanta Mecocci¹⁺, Ilaria Porcellato¹⁺, Katia Cappelli¹, Chiara Brachelente¹, Marco Pepe¹, Rodolfo Gialletti¹, Luca Mechelli¹, Elisabetta Razzuoli²

> ¹Dipartimento di Medicina Veterinaria, Università degli studi di Perugia. ²Istituto zooprofilattico del Piemonte, Liguria e Valle d'Aosta, Genova.

⁺e-mail: samanta.mecocci@studenti.unipg.it, ilariaporcellatodvm@gmail.com

1. Viral detection, gene expression and immunohistochemical characterization of immune infiltrate in genital epithelial tumors

Case ID	Histological	Sex	DNA			cDNA		
	Diagnosis		B2M	L1	E6	L1	E6	E2
1	SCC	Μ	+	+++	++	33.5 ± 0.2	30.4 ± 0.2	>48
2	SCC	Μ	+	+	+	ND	>48	>48
3	SCC	Μ	+	+++	+++	34.3 ± 0.3	32.8 ± 0.3	>48
4	CIS	Μ	+	++++	++++	35.1 ± 0.6	36.2 ± 0.6	44.2 ± 2.4
5	SCC	F	+	++++	++++	ND	31.5 ± 0.7	34.1 ± 0.4

different immunohistochemical markers for in intra/peritumoral areas of epSCCs and in the extratumoral tissues.

6	Р	M	+	+	+	ND	>48	>48
7	SCC	М	+	+	+	35.9 ± 0.7	>48	>48
8	SCC	M	+	++++	+++	32.3 ± 0.3	33.5 ± 0.4	>48
9	SCC	M	+	++++	++++	34.9 ± 0.9	32.7 ± 0.9	36.1 ± 0.6
10	SCC	M	+	++++	+++	ND	33.5 ± 0.3	39.3 ± 1.1
11	SCC	М	+	+	+	33.0 ± 0.3	>48	>48
12	SCC	М	+	++++	++++	ND	33.7 ± 0.4	>48
13	SCC	М	+	+	+	36.6 ± 0.1	>48	>48
14	SCC	М	+	++	+	31.3 ± 2.7	>48	>48
15	SCC	М	+	++++	++++	35.6 ± 0.1	33.9 ± 1.9	38.5 ± 0.6
16	SCC	F	+	++++	++++	ND	31.9 ± 0.4	>48
17	SCC	М	+	++++	+++	ND	35.3 ± 1.5	39.2 ± 0.9
18	SCC	М	+	++	++	31.3 ± 2.7	>48	>48
19	SCC	F	+	++++	++++	35.3 ± 0.1	32.1 ± 1.1	35.6 ± 0.7
20	SCC	М	+	_	-	ND	ND	ND
21	CIS	М	+	+++	++++	33.5 ± 0.2	30.4 ± 0.6	>48
22	SCC	М	+	+++	++++	ND	32.3 ± 0.1	41.9 ± 2.6
23	SCC	M	+	-	-	34.3 ± 0.3	ND	ND

Table: Histological diagnosis: SCC: squamous cell carcinoma; CIS: carcinoma in situ; P: papilloma. RT-PCR data for beta-2-microglobulin (B2M) are expressed as + (amplified) or – (not amplified); Viral amount, L1 and E6 Cq for positivity: - (>38 Cq), + (34–38 Cq), ++ (29–33 Cq), +++ (23–28 Cq), and ++++ (18–22Cq). RT-qPCR data for viral gene expression are indicated as mean Cq ± 1-standard deviation of three replicates. ND indicates no amplification.

Results showed an increased infiltration of CD3+lymphocytes, macrophages (MAC387; IBA1), plasma cells (MUM1), and FoxP3+lymphocytes in the intra/peritumoral stroma when compared to extratumoral tissues (p<0.05), indicating a vivacious TIME in egSCCs. IBA1 and CD20 were intratumorally increased in cases where IL-10 was expressed (p < 0.005), possibly indicating the presence of **immunosuppressive mechanisms**.

2. Selected chemochines and RANKL gene expression

Figure 2: Box plots of the number of CD3 (A), FoxP3 (B), CD20 (C), MUM1 (D), MAC387 neutrophils (E), MAC387 macrophages (F), and IBA1 (G) positive cells in the intra/peritumoral areas and in the extratumoral areas. * p < 0.05, ** p

The SCCs in this study showed the **overexpression** of RANKL, indicating that the related signaling pathway could be considered crucial for both prognostic and therapeutic reasons, since SCC cells in both in humans and animals express RANK mRNA/protein at various levels. Moreover, the upregulation of BCATN1, FOSL1, and LEF1 suggest the activation of Wnt signaling pathway that could be critical for carcinogenesis and tumor progression, often a feature of oncogenic transformation in human cancer.

Figure 3. Relative normalized gene expression, The statistically significant (P < 0.05) values for each gene are reported on the horizontal bars in the upper part of the. C: control group; T: tumor group.

Our results describe a complex inflammatory TIME characterized by the activation of RANKL/RANK and IL17 pathways leading to the upregulation of proinflammatory cytokines, such as IL6 and IL8. Many of these molecules are involved in Th17 differentiation and Treg/Th17 imbalance.

Conclusions

Our results describe an inflammatory environment similar to human counterpart^{3,4} and characterized by a marked infiltration of immune cells, particularly T and B lymphocytes, the activation of RANKL/RANK and IL17 with the relative downstream pathways, and a positive modulation of inflammatory cytokines genes such as IL6 and IL8. Equine genital squamous cell carcinomas may represent a good spontaneous model for the human counterpart. Further prospective studies are needed to confirm these preliminary results.

References:

[1] Sykora S et al. Papillomavirus infection and squamous cell carcinoma in horses. Vet. J. 2017, 223, 48–54. [2] Arthurs, C et al. Equine Penile Squamous Cell Carcinoma: Expression of Biomarker Proteins and EcPV2. Sci. Rep, 10,2020. [3] Ottenhof S.et al. The prognostic

되니면에도

AUIMAL HEALTH

Suárez-Bonnet, A et al. Molecular Carcinogenesis in Equine Penile Cancer: A Potential Animal Model for Human Penile Cancer. Urol.

